
Comment configurer un résolveur DNS local avec Unbound sur Rocky
Linux 9
Unbound	is	free	and	open-source	DNS	server	software	that	can	be	used	for	validating,	recursive,	and	caching	DNS	
resolvers.	It's	a	feature-rich	DNS	server	that	supports	DNS-over-TLS	(DoT),	DNS-over-HTTPS	(DoH),	Query	Name	
Minimisation,	the	Aggressive	Use	of	DNSSEC-Validated	Cache,	and	support	for	authority	zones.	Unbound	is	focused	on	
the	privacy	and	security	of	DNS,	but	without	sacrificing	the	speed	and	performance.

Unbound	is	primarily	developed	by	NLnet	Labs	and	distributed	under	the	BSD	license,	and	it	supports	modern	features	
on	open	standards	of	DNS	Server.	Unbound	has	been	rigorously	audited,	and	it	can	be	run	on	Linux,	BSD,	and	macOS.	
Unbound	is	available	for	most	of	these	OSs	and	can	be	installed	via	the	system	package	manager.

In	this	tutorial,	I	will	set	up	a	Local	DNS	Server	with	Unbound	on	a	Rocky	Linux	9	server.	You'll	configure	Unbound	as	
an	authoritative,	validating,	and	recursive	caching	DNS.	In	addition	to	that,	you'll	also	set	up	Unbound	as	a	DNS	
resolver	for	your	local	network	with	DNS-over-TLS	(DoT)	enabled	on	top	of	it.

Through	the	end	of	this	tutorial,	you'll	also	set	up	Unbound	logs	via	Rsyslog	and	Logrotate,	and	also	set	up	a	Linux	
client	machine	to	use	Unbound	as	a	DNS	resolver	and	verify	your	whole	installation	from	there.

Prerequisites
Before	you	begin	with	this	tutorial,	ensure	that	you	have	the	following	requirements:

A	server	with	Rocky	Linux	9	installed	-	This	example	uses	a	Rocky	Linux	with	the	hostname	'unbound-rocky'	and
the	IP	address	'192.168.5.25'.
A	non-root	user	with	root/sudo	administrator	privileges.
An	SELinux	is	running	in	permissive	mode.

And	that's	it.	If	all	requirements	are	in	place,	go	on	and	start	installing	Unbound	on	your	server.

Installing	Unbound
Unbound	is	a	DNS	Server	software	that	supports	the	majority	of	operating	systems,	including	Linux,	BDS,	and	macOS.
On	Rocky	Linux,	the	Unbound	package	is	available	by	default	on	the	official	Rocky	Linux	AppStream	repository.

In	this	first	step,	you'll	install	the	Unbound	package	to	your	Rocky	Linux	system.

Now	run	the	below	dnf	command	to	verify	the	'unbound'	package	available	on	the	AppStream	repository.	At	the	time	of
this	writing,	the	Rocky	Linux	AppStream	repository	provides	Unbound	1.16.

sudo	dnf	info	unbound

Output:

Install	Unbound	via	the	dnf	command	below.	When	prompted,	input	y	to	confirm	and	press	ENTER	to	proceed.

sudo	dnf	install	unbound

Output:

Once	unbound	is	installed,	start	and	enable	the	'unbound'	service	via	the	below	systemctl	command	utility.	This	will
start	Unbound	on	your	Rocky	Linux	server	and	enable	it	to	run	automatically	upon	the	system	startup.

sudo	systemctl	start	unbound
sudo	systemctl	enable	unbound

Verify	Unbound	service	using	the	below	systemctl	command.	The	output	'active	(running)'	confirms	that	the	Unbound
service	is	running.	And	the	output	'loaded;	enabled;...'	confirms	that	the	Unbound	service	is	enabled.

sudo	systemctl	status	unbound

Output:

Your	Unbound	is	now	installed	and	running	with	the	default	config	file	'/etc/unbound/unbound.conf'.	Next,	you'll	modify
the	Unbound	config	file	'/etc/unbound/unbound.conf'	and	set	up	Unbound	as	an	authoritative,	validating,	and	recursive
caching	DNS,	and	also	enable	Unbound	as	a	DNS	resolver	with	DoT	enabled.

Configuring	Unbound
By	default,	the	Unbound	config	file	is	located	at	'/etc/unbound/unbound.conf'.	In	this	step,	you'll	modify	the	config	file
'/etc/unbound/unbound.conf',	then	set	up	and	optimize	Unbound	installation.

You'll	set	up	Unbound	to	run	as	authoritative,	validating,	and	recursive	caching	DNS.	In	addition	to	that,	you'll	also
optimize	Unbound	installation	for	performance,	privacy,	and	security.	And	lastly,	you'll	set	up	Unbound	as	a	DNS
resolver	for	local	networks.

First,	run	the	below	wget	command	to	download	the	root	DNS	file	to	'/etc/unbound/root.hints'.	Then,	change	the
ownership	of	the	file	'/etc/unbound/root.hints'	to	the	user	and	group	'unbound'.

wget	https://www.internic.net/domain/named.root	-O	/etc/unbound/root.hints
sudo	chown	unbound:unbound	/etc/unbound/root.hints

Next,	backup	the	default	Unbound	config	file	to	'/etc/unbound/unbound.conf.orig'	and	modify	the	original	file
'/etc/unbound/unbound.conf'	using	the	below	nano	editor	command.

sudo	cp	-v	/etc/unbound/unbound{.conf,.conf.orig}
sudo	nano	/etc/unbound/unbound.conf

Now	let's	start	configuring	Unbound.

Unbound	Basic	Configuration

First,	you'll	set	up	which	IP	address	and	port	the	Unbound	service	should	be	running.	Then,	you'll	also	set	up	a
certificate	bundle	that	will	be	used	to	authenticate	connections	made	upstream	and	add	the	root	DNS	servers	via	the
'root-hints'	parameter.

Add	the	following	lines	within	the	'server:'	section.	With	these	settings,	you'll	run	Unbound	on	a	local	IP	address
'192.168.5.25'	with	the	default	UDP	port	'53'.

server:
				...
				...
				#	interface-automatic:	no
				do-ip6:	no
				interface:	192.168.5.25
				port:	53
				prefetch:	yes

				tls-cert-bundle:	/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem
				root-hints:	/etc/unbound/root.hints

Detail	parameters:

do-ip6:	use	'yes'	to	run	Unbound	with	IPv6	or	set	'no'	to	disable	IPv6.
interface:	network	interface	or	IP	address	that	unbound	will	be	running.	You	can	use	an	IP	address	or	the
interface	name	such	as	'eth0'.	Also,	you	can	run	in	a	specific	port	by	adding	format	like	this	'IP-ADDRESS@PORT'.
port:	specify	the	port	that	Unbound	will	be	running	and	the	client's	connections	will	be	handled	by	this	port.	The
default	DNS	port	is	53.
prefetch:	set	to	'yes'	to	enable	prefetching	of	almost	expired	message	cache	entries.
tls-cert-bundle:	Certificates	used	to	authenticate	connections	made	upstream.	On	RHEL-based	distribution,	the
cert	file	is	located	at	'/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem'.
root-hints:	a	file	that	contains	root	DNS	server	details.	You've	downloaded	this	file	to	'/etc/unbound/root.hints'.

Enable	DNS	Cache

Now	add	the	following	lines	to	enable	recursive	caching	DNS	via	Unbound.	This	will	cache	DNS	queries	made	by	clients
on	the	Unbound	server	in	the	amount	of	time.

				cache-max-ttl:	14400
				cache-min-ttl:	1200

Detail	parameters:

cache-max-ttl:	TTL	or	Time	To	Live	for	RRSets	and	messages	in	DNS	cache.	The	format	is	in	seconds.
cache-min-ttl:	minimal	Time	To	Live	for	the	cache.	The	default	is	0,	but	you	can	change	this	to	your	flavor	such	as
'1200'	seconds.	Do	not	set	this	for	more	than	1	hour	or	you	will	get	into	trouble	due	to	stale	data.

Hardening	Unbound

Some	privacy	and	security	parameters	for	Unbound	are	enabled	by	default	on	the	RHEL-based	distribution.	But,	you
can	also	add	more	parameters	like	these	lines.

				hide-identity:	yes
				hide-version:	yes
				use-caps-for-id:	yes

Detail	parameters:

hide-identity:	set	to	yes	to	disable	answers	from	bind	queries	about	id.server	or	hostname.bind.
hide-version:	set	to	yes	to	disable	version.server	and	version.bind	queries.
use-caps-for-id:	set	to	yes	to	enable	the	use	of	'0x20-encoded'	in	the	query	to	foil	spoof	attempts.

Defining	Private	Address	and	Access	Control	Lists

Next,	you'll	need	to	define	private-address	and	ACLs	(Access	Control	Lists)	for	your	local	networks.	Be	sure	to	change
the	local	subnet	in	the	below	lines	with	your	current	network	environment.

				private-address:	192.168.0.0/16
				private-address:	169.254.0.0/16
				private-address:	172.16.0.0/12
				private-address:	10.0.0.0/8
				private-address:	fd00::/8
				private-address:	fe80::/10

				#control	which	clients	are	allowed	to	make	(recursive)	queries
				access-control:	127.0.0.1/32	allow_snoop
				access-control:	::1	allow_snoop
				access-control:	127.0.0.0/8	allow
				access-control:	192.168.5.0/24	allow

Detail	parameters:

private-address:	define	private	network	subnets	on	your	infrastructure.	Only	'private-domain'	and	'local-data'
names	are	allowed	to	have	these	private	addresses.

access-control:	define	access	control	in	which	clients	are	allowed	to	make	(recursive)	queries	to	the	Unbound
server.	The	parameter	'allow'	will	enable	recursive,	while	the	'allow_snoop'	will	enable	both	recursive	and	non-
recursive.

Setting	up	Local	Domain	Name	and	Sub-domains

After	configuring	private-address	and	access	control	lists,	you'll	now	create	local	domain	names	via	the	Unbound	'local-
zone'	parameter.	This	is	very	useful,	especially	if	you	have	multiple	self-hosted	applications	on	your	local	network.	You
can	easily	define	your	domain	name	or	sub-domains	and	pointed	to	the	specific	target	IP	address.

In	this	example,	you'll	set	up	a	'static'	local	domain	'garden.lan'	and	create	multiple	sub-domains	via	the	'local-data'
parameter.	Each	sub-domain	will	be	pointed	to	a	specific	IP	address,	and	also	you'll	create	PTR	records	via	the	'local-
data-ptr'	parameter.

				#	local	zone
				local-zone:	"garden.lan."	static

				local-data:	"firewall.garden.lan.		IN	A	10.0.0.1"
				local-data:	"vault.garden.lan.				IN	A	10.0.0.2"
				local-data:	"media.garden.lan.			IN	A	10.0.0.3"
				local-data:	"docs.garden.lan.							IN	A	10.0.0.4"
				local-data:	"wiki.garden.lan.					IN	A	10.0.0.5"

				local-data-ptr:	"10.0.0.1		firewall.garden.lan"
				local-data-ptr:	"10.0.0.2		vault.garden.lan"
				local-data-ptr:	"10.0.0.3		media.garden.lan"
				local-data-ptr:	"10.0.0.4		docs.garden.lan"
				local-data-ptr:	"10.0.0.5		wiki.garden.lan"

Detail	parameters:

local-zone:	define	the	local	domain	here.
local-data:	define	A	record	for	sub-domains	and	which	local	IP	address	will	be	resolved.
local-data-ptr:	define	the	ptr	record	for	your	sub-domains.

Unbound	Optimization	and	Tweaks

Next,	add	the	following	lines	to	optimize	your	Unbound	installation.	You	can	adjust	and	tweaks	the	parameters	below
depending	on	your	current	environment.

				msg-cache-slabs:	8
				rrset-cache-slabs:	8
				infra-cache-slabs:	8
				key-cache-slabs:	8
				rrset-cache-size:	256m
				msg-cache-size:	128m
				so-rcvbuf:	8m

Detail	parameters:

msg-cache-slabs:	the	number	of	slabs	to	use	for	the	message	cache.	Set	it	to	8	to	optimize	Unbound	to	use	more
memory	for	caching.
rrset-cache-slabs:	the	number	of	slabs	to	use	for	the	RRset	cache.	Set	it	to	8	to	optimize	Unbound	to	use	more
memory	for	the	RRSet	cache.
infra-cache-slabs:	the	number	of	slabs	to	use	for	the	Infrastructure	cache.	Set	it	to	8	to	optimize	Unbound	to	use
more	memory	for	the	Infrastructure	cache.
key-cache-slabs:	the	number	of	slabs	to	use	for	the	key	cache.	Set	it	to	8	to	optimize	Unbound	to	use	more
memory	for	the	key	cache.
rrset-cache-size:	specify	the	amount	of	memory	for	the	RRSet	cache.	This	example	uses	256MB,	with	the	default
is	only	4MB.
msg-cache-size:	specify	the	amount	of	memory	for	the	message	cache.	This	example	uses	128MB,	with	the
default	is	only	4MB.
so-rcvbuf:	set	up	buffer	size	for	DNS	port	53/udp	to	8MB.

Setup	Unbound	as	a	DNS	Resolver	with	DNS-over-TLS	(DoT)

Lastly,	add	a	new	section	'forward-zone'	to	set	up	Unbound	as	a	DNS	resolver	for	your	local	networks.	This	example
uses	Quad9	DNS	servers	with	DoT	(DNS-over-TLS)	enabled	as	an	upstream	DNS	resolver.

forward-zone:
				name:	"."
				forward-ssl-upstream:	yes
				##	Also	add	IBM	IPv6	Quad9	over	TLS
				forward-addr:	9.9.9.9@853#dns.quad9.net
				forward-addr:	149.112.112.112@853#dns.quad9.net

Details	parameters:

forward-zone:	define	forward	zone	for	Unbound.
name:	set	to	"."	to	forward	all	DNS	queries.
forward-addr:	use	a	specific	forwarder	to	forward	all	DNS	queries.	This	example	uses	Quad9	DNS	with	DNS-
over-TLS	(DoT)	enabled.

Now	save	and	exit	the	file	'/etc/unbound/unbound.conf'	when	all	is	finished.

Next,	run	the	below	command	to	verify	Unbound	configurations	and	ensure	that	you've	correct	and	proper
configuration.	When	successful,	you	should	get	an	output	'unbound-checkconf:	no	errors	in	/etc/unbound/unbound.conf'.

unbound-checkconf

Now	restart	the	Unbound	service	via	the	systemctl	command	utility	below	and	apply	the	changes.

sudo	systemctl	restart	unbound

With	this,	you've	now	finished	the	Unbound	configuration	and	it's	now	running	on	IP	address	'192.168.5.25'	with	the
default	UDP	port	'53'.

In	the	next	steps,	you'll	set	up	the	firewalld	to	open	the	DNS	port	and	set	up	Unbound	logging	via	Rsyslog	and
Logrotate.

Setting	up	Firewalld
So,	the	Unbound	is	up	and	running	on	default	UDP	port	53.	Now	you	must	open	the	DNS	port	53/UDP	on	firewalld	and
allow	clients	to	access	your	Unbound	DNS	Server.

Run	the	below	firewall-cmd	command	below	to	add	the	new	service	'dns'.	Then,	reload	the	firewalld	to	apply	the
changes.	When	successful,	you	should	get	an	output	such	as	'success'	on	your	terminal.

sudo	firewall-cmd	--add-service=dns	--permanent
sudo	firewall-cmd	--reload

Next,	run	the	below	command	to	verify	the	list	of	enabled	services	on	firewalld.	And	you	should	see	the	'dns'	service
added	to	the	firewalld.

sudo	firewall-cmd	--list-all

Output:

Setting	up	Unbound	Log	via	Rsyslog	and	Logrotate

After	configuring	the	firewalld,	you'll	now	set	up	a	log	file	for	Unbound	via	rsyslog	and	logrotate.	The	rsyslog	service
will	create	a	specific	log	file	for	Unbound	and	the	logrotate	will	rotate	the	Unbound	log	file	in	a	certain	time.

Create	a	new	config	file	'/etc/rsyslog.d/unbound.conf'	using	the	below	nano	editor	command.

sudo	nano	/etc/rsyslog.d/unbound.conf

Add	the	following	lines	to	the	file.	With	this,	the	Rsyslog	will	create	a	new	log	file	'/var/log/unbound.log'	for	the
'$programname'	==	'unbound'.

#	Log	messages	generated	by	unbound	application	
if	$programname	==	'unbound'	then	/var/log/unbound.log
#	stop	processing	it	further
&	stop

Save	and	exit	the	file	'/etc/rsyslog.d/unbound.conf'	when	finished.

Next,	create	a	new	Logrottate	config	file	'/etc/logrotate.d/unbound'	using	the	below	nano	editor	command.

sudo	nano	/etc/logrotate.d/unbound

Add	the	following	lines	to	the	file.	This	will	create	log	rotation	for	the	Unbound	log	file	'/var/log/unbound.log'	on	a	daily
basis.

/var/log/unbound.log	{
		daily
		rotate	7
		missingok
		create	0640	root	adm
		postrotate
				/usr/lib/rsyslog/rsyslog-rotate
		endscript
}

Save	the	file	and	exit	the	editor	when	finished.

Lastly,	run	the	following	systemctl	command	utility	to	restart	both	Rsyslog	and	Logrotate	services	and	apply	the
changes	to	your	system.

sudo	systemctl	restart	rsyslog
sudo	systemctl	restart	logrotate

With	this,	you've	now	finished	the	Unbound	installation.	In	the	next	step,	you'll	learn	how	to	set	up	a	local	client
machine	to	use	Unbound	as	a	DNS	resolver	using	two	methods,	then	you'll	verify	the	Unbound	DNS	server	from	there.

Setting	up	DNS	Resolver	for	Client
To	set	up	DNS	resolver	on	client	machines,	you	can	use	different	methods.	In	this	step,	you'll	learn	how	to	set	up	DNS
resolvers	via	NetworkManager	and	via	the	systemd-resolved	combined	with	NetworkManager.

Via	NetworkManager

If	you	want	to	set	up	DNS	resolver	via	NetworkManager	directly,	then	you	must	edit	your	network	interface
configurations,	which	are	stored	in	the	'/etc/NetworkManager/system-connections/'	directory.

In	this	example,	the	main	connection	for	the	client	machine	is	'eth0',	so	the	configuration	on	NetworkManager	should
be	'/etc/NetworkManager/system-connections/eth0.nmconnection'.	You	may	have	different	interface	names	such	as
eth1	and	many	more.

Open	the	NetworkManager	interface	config	file	'/etc/NetworkManager/system-connections/eth0.nmconnection'	using
the	below	nano	editor	command.

sudo	nano	/etc/NetworkManager/system-connections/eth0.nmconnection

Add	the	following	lines	to	the	'[ipv4]'	section.	Also,	be	sure	to	change	the	IP	address	on	the	'dns'	parameter	with	your
Unbound	DNS	Server.

[ipv4]
...
dns=192.168.5.25
ignore-auto-dns=true

Save	and	exit	the	file	when	finished.

Next,	run	the	below	systemctl	command	to	restart	the	NetworkManager	service	and	apply	the	changes.	Then,	verify	the
DNS	resolver	config	file	'/etc/resolv.conf'	via	the	cat	command.

sudo	systemctl	restart	NetworkManager
cat	/etc/resolv.conf

You	should	get	an	output	that	the	IP	address	'192.168.5.25'	is	configured	as	the	default	DNS	resolver	for	your	client
machine.

Via	systemd-resolved	and	NetworkManager

Another	way	to	set	up	a	DNS	resolver	is	via	the	systemd-resolved	and	NetworkManager.	With	this,	you	can	easily
change	the	DNS	resolver	system-wide	and	not	depend	on	network	interfaces	on	your	system.

On	RHEL-based	distributions,	the	systemd-resolved	is	not	yet	installed.	You	can	easily	install	it	via	the	dnf	command
below.	When	prompted,	input	y	to	confirm	and	press	ENTER	to	proceed.

sudo	dnf	install	systemd-resolved

Output:

After	systemd-resolved	is	installed,	open	the	config	file	'/etc/systemd/resolved.conf'	using	the	below	nano	editor
command.

sudo	nano	/etc/systemd/resolved.conf

On	the	'[Resolver]'	section,	uncomment	the	'DNS'	parameter	and	add	your	Unbound	DNS	server	IP	address	into	it.

[Resolver]
DNS=192.168.5.25

Save	and	exit	the	file	when	finished.

Next,	run	the	below	systemctl	command	to	start	and	enable	the	'systemd-resolved'	service.

sudo	systemctl	start	systemd-resolved
sudo	systemctl	enable	systemd-resolved

Now	verify	the	'systemd-resolved'	service	to	ensure	that	the	service	is	running.	You	should	receive	an	output	such	as
'active	(running)',	which	confirms	that	the	service	is	running.	And	the	output	'Loaded	../../systemd-
resolved.service;	enabled;..'	confirm	that	the	service	is	enabled	and	will	start	automatically	upon	the	system	startup.

sudo	systemctl	status	systemd-resolved

Output:

With	the	systemd-resolved	running,	you'll	next	modify	the	DNS	backend	for	the	NetworkManager	service.

Open	the	NetworkManager	config	file	'/etc/NetworkManager/NetworkManager.conf'	using	the	below	nano	editor
command.

sudo	nano	/etc/NetworkManager/NetworkManager.conf

Under	the	'[main]'	section,	add	the	'dns'	parameter	with	the	value	'systemd-resolved'.	This	will	override	the	DNS
server	on	your	NetworkManager	to	use	the	'systemd-resolved'	service.

[main]
dns=systemd-resolved

Save	and	exit	the	file	when	finished.

Now	run	the	below	systemctl	command	to	restart	the	NetworkManager	service	and	apply	the	changes.	The	new	DNS
resolver	for	NetworkManager	is	written	in	the	'/run/NetworkManager/resolv.conf'	file.

sudo	systemctl	restart	NetworkManager

Run	the	below	command	to	remove	the	default	file	'/etc/resolve.conf'.	Then,	create	a	new	symlink	file	of
'/run/NetworkManager/resolv.conf'	to	'/etc/resolv.conf'.

rm	-f	/etc/resolv.conf
ln	-s	/run/NetworkManager/resolv.conf	/etc/resolv.conf

With	this,	your	client	machine	is	now	using	the	systemd-resolved	as	the	DNS	resolver.	Behind	the	'systemd-resolved',
you're	using	the	Unbound	DNS	Server.

Below	is	the	details	of	'/etc/resolv.conf'	file	after	using	the	systemd-resolved	and	NetworkManager.

cat	/etc/resolv.conf

Output:

Verifying	Unbound	DNS	Server
Run	the	dig	command	below	to	ensure	that	the	Unbound	DNS	is	working	as	a	DNS	resolver.	The	parameter
'@192.168.5.25'	ensures	that	you're	using	an	Unbound	DNS	server	that	runs	on	IP	address	'192.168.5.25'.

dig	@192.168.5.25

When	successful,	you	receive	an	answer	from	the	root	DNS	server	like	the	below	output.	Also,	you'll	notice	the	'ad'
(authentic	data)	flag	in	the	header	output,	which	means	the	DNSSEC	is	enabled.

Next,	run	the	below	command	to	ensure	that	clients	can	access	domain	names	on	the	internet.

dig	google.com
dig	fb.com

When	successful,	you	should	receive	an	output	details	DNS	record	for	the	domain	'google.com'	and	'fb.com'.	You	can
see	the	DNS	resolver	that	answers	the	query	is	'127.0.0.53#53',	which	is	the	systemd-resolved	that	uses	Unbound	as
the	default	resolver.	Also,	you	can	see	the	'Query	time'	for	each	query,	the	'Query	time'	to	domain	'google.com'	is
'74ms'	and	to	'fb.com'	is	'154ms'.

Output	for	google.com:

Output	for	fb.com:

If	you	rerun	the	dig	command	on	top,	the	'Query	time'	should	be	reduced.	And	this	confirms	that	your	queries	have
been	cached,	and	the	DNS	cache	is	working.

dig	google.com
dig	fb.com

Output:

Next,	verify	the	local	domain	or	sub-domain	via	the	dig	command	below.	If	successful,	each	sub-domains	will	be	pointed
to	the	correct	IP	address	as	configured	on	the	Unbound	config	file	'/etc/unbound/unbound.conf'.

dig	firewall.garden.lan	+short
dig	vault.garden.lan	+short
dig	media.garden.lan	+short

Output:

Now	run	the	below	dig	command	to	ensure	that	PTR	records	are	pointed	to	the	correct	domain	name.

dig	-x	10.0.0.1	+short
dig	-x	10.0.0.2	+short
dig	-x	10.0.0.3	+short

Output:

Lastly,	you	can	also	verify	DoT	(DNS	over	TLS)	via	tcpdump.	Install	the	'tcpdump'	package	to	your	Unbound	server	via
the	dnf	command	below.

sudo	dnf	install	tcpdump

Input	y	when	prompted	and	press	ENTER	to	proceed.

Now	run	the	below	tcpdump	command	to	monitor	traffics	on	the	interface	'eth0'	with	DoT	port	853.	In	this	example,
the	Unbound	DNS	is	running	on	IP	address	'192.168.5.25'	with	the	interface	'eth0'.

tcpdump	-vv	-x	-X	-s	1500	-i	eth0	'port	853'

Move	to	the	client	machine	and	run	the	below	command	to	access	external/internet	domain	names	via	the	dig	command
below.

dig	twitter.com

Output:

After	that,	move	back	to	the	Unbound	server	and	you	should	now	get	an	output	similar	to	this	on	the	tcpdump	output.

With	this,	you've	now	installed	and	configured	Local	DNS	Server	via	Unbound.	Also,	you've	configured	a	DNS	resolver
on	RHEL	clients	via	systemd-resolved	and	NetworkManager.

Conclusion
In	this	guide,	you've	installed	Unbound	Local	DNS	Server	on	a	Rocky	Linux	9	server.	You've	enabled	DNS	cache,
DNSSEC	(enabled	by	default),	configure	private-address	and	ACLs,	added	local	domain	via	local-zone,	then	configured
Unbound	as	DNS	resolver	with	DoT	(DNS-over-TLS).

In	addition	to	that,	you've	configured	basic	DNS	privacy	and	security,	optimized	Unbound,	and	configured	Unbound
logs	via	rsyslog	and	logrotate.

To	the	end	of	this	guide,	you've	also	learned	how	to	set	up	a	DNS	resolver	on	RHEL-based	distributions	via
NetworkManager	and	systemd-resolved.	And	also	learned	the	basic	usage	of	the	dig	command	for	checking	the	DNS
server.

